Chapter 5
Niceness theorems

Michiel Hazewinkel

Abstract There are many results and constructions in mathematics that are *un-
reasonably nice . For instance it appears to be difficult for a set to carry many
compatible (algebraic) structures. More precisely, if, say, an algebra carries a com-
patible xhighers structure the underlying algebra must be very regular. For instance,
if an associative unital algebra (over a characteristic zero field) carries a graded con-
nected Hopf algebra structure the underlying algebra is free commutative. There are
many such theorems in various different parts of mathematics. This paper gives a
number of examples of this phenomenon and of similar phenomena as a preliminary
step in starting to examine and try to understand this matter. Besides unreasonably
nice constructions and theorems there is also the matter of nice proofs. By this I
mainly mean proofs that principally rely on, for instance, the universal properties
that define an object, and that do not rely (too much) on calculations. This matter is
touched upon in the last section of this paper.

5.1 Introduction and statement of the problems

In this paper I aim to raise a new kind of question.! It appears that many important
mathematical objects (including counterexamples) are unreasonably nice, beauti-
ful and elegant. They tend to have (many) more (nice) properties and extra bits of
structure than one would a priori expect.
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meeting in Tromsg, Norway in June 2008. The present screed expands on those first lectures a
great deal. Yet, in spite of its length it is just a beginning: a fist scratching at the edges of a great
and fascinating problem that deserves devoted attention.

1.S. Kotsireas, E.V. Zima (eds.), Advances in Combinatorial Mathematics, 79
DOI 10.1007/978-3-642-03562-3_5, © Springer-Verlag Berlin Heidelberg 2009



80 Hazewinkel M.

The question is why this happens and whether this can be understood.”

These ruminations started with the observation that it is difficult for, say, an ar-
bitrary algebra to carry additional compatible structure. To do so it must be nice,
i.e., as an algebra be regular (not in the technical sense of this word), homogeneous,
everywhere the same, ... . It is for instance very difficult to construct an object
that has addition, multiplication and exponentiation, all compatible in the expected
ways.

The present scribblings are just a first attempt to identify and describe the phe-
nomenon. Basically this is a prepreprint and it touches just the fringes of the subject.
There is much more to be said and there are many more examples than remarked
upon here.

This paper is about lots of examples of this phenomenon such as Daniel Kan’s
observation that a group carries a comonoid structure in the category of groups if
and only if it is a free group, the Milnor-Moore and Leray theorems in the theory
of Hopf algebras, Grassmann manifolds and classifying spaces, and especially the
star example: the ring of commutative polynomials over the integers in countably
infinite indeterminates. This last one occurs all over the place in mathematics and
has more compatible structures that can be believed. For instance it occurs as the
algebra of symmetric functions in infinitely many variables, as the cohomology and
homology of the classifying space BU, as the sum of the representation rings of the
symmetric groups, as the free lambda-ring on one variable, as the representing ring
of the Witt vectors, as the ring of rational representation of GL.., as the underlying
ring of the universal formal group, ... .

To start with, here is a preliminary list of the kind of phenomena I have in mind.

- A. Objects with a great deal of compatible structure tend to have a nice regular
underlying structure and/or additional nice properties: “Extra structure simplifies
the underlying object”. As indicated above this sort of thing was the starting point.

- B. Universal objects. That is mathematical objects which satisfy a universality
property. They tend to have:

a) a nice regular underlying structure
b) additional universal properties (sometimes seemingly completely unrelated to the
defining universal property)

2 There is of course the “anthropomorphic principle” answer, much like the question of the ex-
istence of (intelligent) life in this universe. It goes something like this. If these objects weren’t
nice and regular we would not be able to understand and describe them; we can see/understand
only the elegant and beautiful ones. I do not consider this answer good enough though there is
something in it. So the search is also on for ugly brutes of mathematical objects. Also this an-
thropomorphic argument raises the subsidiary questions of why we can only understand/describe
beautiful/regular things. There are aspects of (Kolmogorov) complexity and information theory
involved here.
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- C. Nice objects tend to be large and inversely large objects of one kind or an-
other tend to have additional nice properties. For instance, large projective modules
are free [12]

- D. Extremal objects tend to be nice and regular. (The symmetry of a problem
tends to survive in its extremal solutions is one of the aspects of this phenomenon;
even when (if properly looked at) there is bifurcation (symmetry breaking) going
on.)

- E. Uniqueness theorems and rigidity theorems often yield nice objects (and in-
versely). They tend to be unreasonably well behaved. Le. if one asks for an object
with such and such properties and the answer is unique the object involved tends to
be very regular. This is not unrelated to D.

Concrete examples of all these kinds of phenomena will be given below (sec-
tion 2) as well as a (pitiful) few first explanatory general theorems (section 3).
The “niceness phenomenon” is not limited to theorems saying that e.g. in suit-
able circumstances an object is free; it also extends to counter examples: many
of them are very regular in their construction. This can, for instance, take the
form of a simple construction repeated indefinitely. Some examples are in sec-
tion 5.2.6 below. All in all I detect in present day mathematics a strong tendency
towards the study of things that in some sense have low Kolmogorov complex-

ity.

5.2 Examples
5.2.1 Lots of compatible structure examples

5.2.1.1 Groups in the category of groups

To start with here is an observation of Daniel Kan, [89], which has moreover the
distinction of being one of the first results of this kind and of admitting a nice (sic!)
pictorial illustration.

First, here is the abstract setting. Let % be a category with a terminal object and
products. For example the category Group of groups where the product is the direct
product and the terminal object is the one element group.

A group object in such a category ¥ is an object G € € equipped with a mor-
phism m : G x G — G (multiplication), a morphisme : T — G (unit element) where
T is the terminal object of the category %, and a morphism 1 : G — G (inverse) such
that the categorical versions of the standard group axioms hold. This means that the
following diagrams are supposed to be commutative.
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mxid

GxGxG —— GxG
l,.(,x,,, l,,, (associativity) ~ (5.1)

m

GxG — G

idxe exid

GxT —— GxG TxG —— GxG

Tg l Tg l (unit) (52)

G —|— G G —— G
¢ ., 6x6 ¢ Y, 6xe6
l l n l 1"1 (inverse) (5.3)
T —— G T — G

where the vertical arrow on the left hand side of the two diagrams (5.3) is the unique
morphism in the category % to the terminal object and the vertical isomorphisms on
the left of (5.2) are the canonical isomorphisms of an object with the product of that
object with the terminal object.

In the case of the category of groups this means that a group object is a group with
composition law denoted + (though it is not clear yet that it is commutative) with a
second composition law, denoted = that is distributive over the first composition law
in the sense that the following identity holds

(a+b)*(d +b) = (axd )+ (bxb) (5.4)

This comes from the requirement that * must be a morphism in the category Group.
Let 0 be the unit element for the composition law + and 1 the unit element for the
composition law . Putting b = ' = 0 in (5.4) gives

axb' = (ax0)+ (0D (5.5)
On the other hand putting &’ = b’ = 1 in (5.4) gives
at+b=(a+b)*(1+1)

and multiplying this with the inverse of (a + b) for the star composition gives 1 =
141 and hence 1 = 0. Put this in (5.5) to find that a x5’ = a + b’ showing that the
compositions are the same and then (5.4) immediately gives that both are Abelian.

Thus a group object in the category of groups is Abelian and the second com-
position law is the same as the first. Actually this can be proved more generally for
monoid objects in the category of groups [89].

There is a nice illustration of this in homotopy theory (and that is where the idea
came from). This goes as follows. The second homotopy group, 2 (X, *), of a based
space (X, x) is, as a set, the set of all homotopy classes of maps from the disk into
X that take the boundary circle into the base point * of X.
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For illustrational (and conceptual) purposes it is easier to think of homotopy
classes of maps from the unit filled square to X that take the boundary to the base
point. Homotopically, of course, this makes no difference.

Now let

f

> (Xa*)

f/

v

(X %)

be two such maps. They can be glued together horizontally to give a map of the
same kind (up to homotopy):

f fl » (X’*)

and this induces a composition on (X, *) turning it into a group. Of course the
two maps can also be glued together vertically, inducing another, a priori different,
group structure.

Now take four such maps f, f',g,g’. Then first gluing £, f" and g, g’ together hor-
jzontally and then gluing the two results together vertically gives a map that can be
depicted

f i
, > (X,%)

Obviously the same rcsult is obtained by first gluing f and g together vertically,
gluing £’ and g’ together vertically, and gluing the results together horizontally. This
establishes the relation (5.4) in the present case and shows that m (X, *) is Abelian.?

3 In the present case of homotopy groups it can of course also easily be shown directly that vertical
gluing and horizontal gluing give the same result and this is how things are done traditionally in
textbooks; see e.g. [84].
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5.2.1.2 Comonoids in the category of groups

Dually there is the notion of a cogroup object in a category.

For this let ¥ be a category with direct sums and an initial object. Again the
category of groups is an example with the one element group as initial object. The
categorical direct sum in Group is what in group theory is called the free product.

A cogroup object in such a category %’ is an object C € ¥ together with a comul-
tiplication ¢t : C — CXC, a coinverse t : C — C, and a counit morphism £ : C — /.
Here I € ¥ is the initial object and X stands for the direct sum in %. These bits of
structure are supposed to satisfy the dual axioms to those for a group object depicted
by diagrams (5.1) — (5.3), that is the diagrams obtained by reversing all arrows (and
replacing m by i and e by &) must be commutative. For a comonoid object leave
out the coinverse and (the dual of) diagram (5.3).

It is now a theorem, [89], that the underlying group of a comonoid object in the
category of groups is free as a group. This has much to do with the fact that the
categorical direct sum in Group is given by the free product construction.

5.2.1.3 Hopf’s theorem on the cohomology of H-spaces

An H-space is a based topological space (X,*) together with a continuous map
m:X x X — X such that x — m(x, *) and x — m(*,x) are homotopic to the identity.?
The result of Heinz Hopf, [82], see also [50], alluded to is now as follows.

Let k be a field of characteristic zero and X a path connected H-space such that
H,(X;k) is of finite type then H*(X; k) is a free graded-commutative graded algebra.

Here ‘finite type’ means that each H;(X;k) is finite dimensional and the coho-
mology algebra is graded-commutative ( = commutative in the graded sense), i.e.
xy = (—1)degree(x)degree(y)yy Thus the seemingly weak extra bit of structure ‘H-
space’ has a profound influence on the (cohomological) structure of a space.

5.2.1.4 Intermezzo: Hopf algebras

Let R be a unital commutative ring. A graded module over R is simply a collection
of modules over R indexed by the nonnegative integers.> Or, equivalently, it is a
direct sum
M= P M (5.6)
ieNL{0}
An element x € M; is said to be homogeneous of degree i. A graded module (5.6) is
said to be of finite type if each of the M; is of finite rank over the base ring R.

4 Often in the literature for an H-space it is also required that the ‘multiplication’ m is associative
up to homotopy. For the present result that is not required.

3 These will be the only kind of gradings occurring.
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The tensor product of two graded modules M, N is graded by assigning degree
i+ j to the elements from M; ® N;.

A graded algebra over R is a graded module (5.6) equipped with a graded asso-
ciative multiplication and a unit element

m-MOM—-M, I}I(M,'®Mj) C M, leMp 5.7

There are two notions of commutativity for graded algebras: (ordinary) com-
mutativity, which means xy = yx, and graded-commutativity, whigh means xy =
(—1)deel®)deg0)yy Both occur frequently in the literature and both will occur in the
present paper.®

Correspondingly there are two versions for the multiplication in the tensor prod-
uct of (the underlying graded modules) of graded rings, viz.

ey ey)=x’'ey 58
(x®y)(¢ ®Y) = (~1) e 42t @ yy 68

where in the second equation the elements x,x’y,y’ are supposed to be homogeneous.
The sign factor in the second equation of (5.8) is needed to ensure that the tensor
product of two graded-commutative graded algebras is graded-commutative (as of

course one wants it to be). . . .
Dually a graded coalgebra over R is a graded module equipped with a coassocia-
tive comultiplication and a counit

LM MM, uM,) C P Mi@M;;e: M — R,e(M;)=0fori>0
i+j=n

Just as in the algebra case there are two notions of cocommutativity and two ways
to define a coalgebra structure on the tensor product of two graded coalgebras.. Tt.lese
two are as follows. Let C and D be two graded coalgebras with comultiplications
Uc, Up- Write Ny

e(x) =Y X ®x, up(y) = Z}’j@’)’j
as sums of tensor products of homogeneous elements. Then the two graded coalge-
bra structures alluded to are

x®y— L ®Y;®x] @]
(5.9)
x@y i B(-1)* D gy @ @]

Next, a graded bialgebra B is a comonoid object in the category of graded al-
gebras or, equivalently, a monoid object in the category of graded coalgebras. Here
again there are two versions depending on what algebra and coalgebra structures are
taken on B@ B. First there is an ‘ordinary’ bialgebra which happens to carry a grad-

6 If all the odd degree summands of the graded ring are zero the two notions agree. This can be
used to unify things.
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ing. In this case the algebra and coalgebra structures are given by the first formulas
of (5.8) and (5.9). Second there is the ‘grade-twist’ version in which the algebra
and coalgebra structures on the tensor product are given by the second formulas
from (5.8) and (5.9). Here ‘ordinary twist’ and ‘grade twist’ respectively refer to the
morphisms

X®y - y®x, x@y s (—1)%EW ey @

which make their appearance when the conditions are written out explicitly in terms
of diagrams or elements.

Finally, a.graded Hopf algebra is a graded bialgebra that in addition carries a
so-called antipode. That is a morphism t of graded modules of degree O (so that
1(H;) C H;) that satisfies

m(id@ )y =ee and m(1@id)u = e€.

A graded Hopf algebra over R is connected if the grade zero part Hy is equal to R so
that e and € induce isomorphism of R with Hy.

An element x in a graded Hopf algebra (or bialgebra) is called primitive if it
satisfies

pHx)=1®x+x21 (5.10)

These form a graded submodule P(H) of the Hopf algebra H. In the case of an
‘ordinary twist’ Hopf algebra the commutator product

[x, ] =xy —yx .11

turns P(H) into a Lie algebra (that happens to carry a grading such that the Lie
bracket is of degree 0). In the case of a ‘graded twist’ Hopf algebra take

[x,y] = xy — (= 1)2eE@ 980y (5.12)

to obtain a graded Lie algebra. That is a module equipped with a bilinear product [, ]
that satisfies graded anticommutativity and the graded Jacobi identity:

[x,y] = (—1)dee(®)deg0) [y, 4]

b, I 2] = (1,912 + (= 1) 8e20) [, [ 619

5.2.1.5 Milnor-Moore theorem (topological incarnation)

Let PX be the Moore path space of a path connected based topological space (X, *).
That is the space of paths starting from * with specified length (which is what the
adjective ‘Moore’ means in this context). Assigning to a path its endpoint defines a
continuous map PX — X, which is a fibration with QX, the space of Moore loops,
as its fibre (over x). As PX is contractible the long exact homotopy sequence at-
tached to this fibration gives isomorphisms 7,(X) — m,—(£X). This can be used
to transfer the Whitehead products 7, (X) x 7m,(X) — Tpin=1(X) to a Lie prod-
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m
uct (of degree zero) (m.(QX) @ k) x (. (QX) @ k) =, 7 (Q2X) ®k, defining a
graded Lie algebra Ly.

Composition of loops turns X into a topological monoid and, up to homotopy
there is an inverse as well. Using the Alexander - Whitney and Eilenberg - Zilber
chain complex equivalences, see [50}, p. 53ff, and the fact that taking homology
of chain complexes commutes with tensor products, ibid. p. 48, the composition
OX x QX — QX and diagonal A : QX — QX x QX induce an algebra and coalge-
bra structure on H,(£2X). Moreover, essentially because a loop in a product X x ¥ is
a pair of loops and composition of loops seen this way goes component-wise, the co-
multiplication morphism H, (2X) — H.(2X) ® H.(£2X) is an algebra morphism,’
ibid. p. 225.

All in all this turns H, (£2X) into a graded connected Hopf algebra (of the ‘graded
twist’ kind).

Now let the coefficients ring used when taking cohomology be a field of charac-
teristic zero.

5.2.1.6 Theorem ([127], see also [50], p. 293)

Let X be a simply connected path connected topological space. Then the Hurewicz
homomorphism for QX is an isomorphism of graded Lie algebras of Ly onto the
graded Lie algebra of primitives of H, (QX;k) and this isomorphism extends to an
isomorphism of graded Hopf algebras of the universal enveloping algebra ULy with
H.(Q2X;k)3

There is also a purely algebraic theorem that goes by the name ‘Milnor-Moore
theorem’. That one involves the notion of the universal enveloping algebra of a Lie
algebra and will be discussed in subsection 5.2.3 below. To conclude this section
5.2.1 let me briefly mention two more simple results that, I feel, qualify as ‘niceness
theorems’. Both say that the presence of a Hopf algebra (bialgebra) structure has
implications for the underlying algebra.

5.2.1.7 Cartier’s theorem on nilpotents in group schemes

Let H be a finite dimensional Hopf algebra over a field of characteristic zero. Then
the underlying algebra has no nilpotents. Actually a much stronger statement holds,
see [44]. The usual statement is: A group scheme of finite type over a field of char-
acteristic zero is smooth. See loc. cit. and [159], p. 7.

In characteristic p > 0, Cartier’s theorem does not hold. On k[X]/(X?) where k
is a field of characteristic p > 0, there are the two comultiplications

7 This is the origin of the unfortunate but frequently used notation ‘A’ for the comultiplication in
a Hopf algebra.
8 Universal enveloping algebras are the topic of section 5.2.2.1 below.
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X—12X+Xal, X—10X+X®1+XR®X

and both define a bialgebra, and in fact Hopf algebra structure on &[X]/(X”). These
two Hopf algebras (finite group schemes) are traditionally denoted ¢z, and 1,,.

5.2.1.8

Let & be a field and n an integer > 2. Then there is no bialgebra structure on the
algebra M"*" (k) of n x n matrices over k. See [40}, p. 173.

It is completely unknown which products of matrix algebras do carry (admit) a
bialgebra structure.

Much of mathematics concerns statements as to what consequences follow from
what assumptions. So it can be argued that there is nothing particularly special about
the results described above. However, I feel that there is something special, some-
thing particularly elegant, about the results described. Part of the general problem is
to understand why and in what sense.

Several of the theorems above are ‘freeness theorems’. They say that in the pres-
ence of suitable extra structure an object is free. Here follow five more. For the first
three the ‘extra structure’ is that the object in question is imbedded in a free object.
In some categories that means nothing; in others it is a strong bit of extra structure.
Just what categorical properties rule this behavior is completely unknown.

5.2.1.9 Nielsen-Schreier theorem

A subgroup of a free group is free, [142] [133]; [150], p. 181.

5.2.1.10 Shirshov-Witt theorem

Lie subalgebras of a free Lie algebra are free, [147], [162]). There is also, up to a
point, a braided version, [93].

5.2.1.11 Bergman centralizer theorem

The centralizer of a non-scalar element in a free power series ring k < X > is of
the form k{[c]], [17], [38], p. 244.. Here c is a single element!

5.2.1.12

The fundamental group of a cogroup object in the homotopy category of ‘nice’ based
topological spaces is free. See [18]. These objects are sometimes called H’-spaces
(as a kind of dual or opposite object to H-spaces).
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5.2.1.13 Bott-Samelson theorem

The homology algebra H,(QZX;k) is a free algebra generated by Hy(X;k), [24],
{18]. Here X is the suspension functor and Q is the loop space functor on based
topological spaces. These are adjoint and there results a topological morphism X —
QXX. The multiplication comes from the fact that loops at the base point can be
composed making a loop space an H-space.

5.2.2 Universal object examples

Here the theme is that objects that are defined in terms of some universal property
have a tendency to pick up extra bits of structure.

5.2.2.1 The universal enveloping algebra of a Lie algebra

Let A be a unital associative algebra over a unital commutative base algebra R.
Associated to A there is a Lie algebra structure on A defined by the commutator
difference

(X, ¥4 =xy—yx (5.14)

Let g be a Lie algebra. A Lie morphism from g to a unital associative algebra
A is a module morphism ¢ : g — A such that ¢([x,ylg ) = [¢x, ¢¥]4. The univer-
sal enveloping algebra on g is a unital associative algebra Ug together with a Lie
morphism i : g — Ug such that for each Lie morphism ¢ : g — A there is a unique
morphism of associative algebras ¢ : Ug — A such that ¢ oi = ¢. Pictorially (in
diagram form) this can be rendered as follows

g———Ug (5.15)

The associative unital algebra Ug is a very nice one. For instance there is the
Poincaré - Birkhoff - Witt theorem that specifies (under suitable circumstances) a
monomial basis for it. This results basically from the construction of Ug. (And one
wonders whether this PBW theorem can be deduced directly from the characterizing
universality property.)

What is of interest in the present setting is that the universality property im-
mediately implies that Ug has more structure; in fact that it is a Hopf algebra.
This arises as follows. Consider the associative algebra Ug ® Ug and the morphism
x+— 1®x+x@ | from g into it. It is immediate that this is a Lie morphism and hence
there is a corresponding (unique) morphism of associative algebras Ug — Ug@Ug.
It is immediate that this turns Ug into a Hopf algebra.
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There is a completely analogous picture for graded Lie algebras.

Of course the universal problem described here is an instance of an adjoint func-
tor situation. Let Lie be the category of Lie algebras (over R) and Alg the category
of unital associative algebras (over R). Then associating to an associative algebra A
its commutator difference product is a (forgetful) functor V : Alg — Lieand g — Ug
is a functor the other way that is left adjoint to it:

Lie(g,V(4)) = Alg(Ug,A) (5.16)

In the case of a forgetful functor a left adjoint to it yields what are often called free
objects (as in this case). Thus Ug is the free associative algebra on the Lie alge-
bra g.

A right adjoint functor to a forgetful functor gives cofree objects. An example of
a cofree construction will occur below.

The very important notion of adjointness is due to Daniel Kan, [88] and as Saun-
ders Mac Lane says in the preface of [116] “Adjoint functors arise everywhere”.

If (F,G) is an adjoint functor pair, i.e. e.g. €(FX,Y) = ®(X,GY) functorialy
(loosely formulated), one expects niceness properties for both the FX’s and the
GY’s. And indeed many niceness results fall into this scope with the proviso that
often these objects pick up extra properties which are not implicit in the adjoint
situation alone.

5.2.2.2 The group algebra of a group

Much the same picture holds for the group algebra of a group. Except much easier.
Here the ‘forgetful functor’ assigns to an algebra A its group A* of invertible ele-
ments. Recall that the group algebra kG of a group is the free module over k with
basis G and the multiplication determined on this basis by the group multiplication.
The adjointness equation now is:

Group(G,A*) = Alg, (kG,A) (5.17)

There is again a Hopf algebra structure for free. For this, to put things formally on
the same footing as in the case of the universal enveloping algebra, consider the
morphism

G— (kGRKG)", g—g®g

which by the adjointness equation (5.17), gives rise to a morphism of algebras kG —
kG ® kG turning kG into a bialgebra (and a Hopf algebra using the group inverse).
Of course in this case things are so simple that it is not worthwhile to go through
this yoga.
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5.2.2.3 Free algebras

Everyone knows how to construct the free algebra over a module (or a set). The
tensor algebra does the job and that is a very nice structure. Less known is that this
also works in the setting CoAlg - HopfAlg, where CoAlg and HopfAlg are suitable
categories of coalgebras and Hopf algebras over a suitable base ring. See [130] and
[70]. This gives the free Hopf algebra on a coalgebra.

5.2.2.4 Cofree coalgebras

Given a module M, the cofree coalgebra over” M would be a coalgebra C(M) to-
gether with a module morphism C(M) D, M such that for each coalgebra C to-

gether with a morphism of modules C -2, M there is a unique morphism of coalge-
bras 0, : C — C(M) such that 0 = c.

Whether the cofree coalgebra over a module always exist is not quite settled,
[76]; they certainly exist in many cases. In the connected graded context they always
exist and are given by the tensor coalgebra, again a very nice structure.

And in this connected graded context there is the Alg - HopfAlg version giving
the cofree Hopf algebra over an algebra, [70], [130].

5.2.2.5 The classifying spaces BU;,

A completely different kind of universal object is formed by the complex Grass-
mannians and their inductive limits the classifying spaces BUy.
Consider the complex vector space C"**" and define the complex Grassmannian

Gry(C™*") = {V : V is an n — dimensional subspace of C"*"} (5.18)

This set has a natural structure of a smooth manifold (in fact a complex analytic
manifold). Letting » go to infinity (which technically means taking an inductive
limit) gives the classifying space

BU;, = limGry(C"") = Gry(C™) (5.19)

9 1t pays to be terminologically careful in this context. I prefer to speak of the free algebra on a
module and the cofree coalgebra over a module.
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It is also perfectly possible to define and work directly with the most right hand side
of (5.19). There is a canonical complex vector bundle over BU; which is colloqui-
ally defined by saying the fibre over x € BUy “is x”. More precisely this canonical
vector bundle 7y is

= {(x,v) : x € BUp, v € x} with projection (x, V) — x, % — BUp

There is now the following universality/classifying property. For every paracompact
space X with an n-dimensional complex vector bundle & over it there is a map
fe : X — BUy, such that £ is isomorphic (as a vector bundle) to the pullback fg(yn).
Moreover f¢ is unique up to homotopy.

The remarkable thing here is that the classifying spaces BUj, are so elegant and
simple (as are the universal bundles over them). There are more nice properties.
Jumping the gun a little — these spaces will return later — the cohomology of these
spaces is particularly nice

H*(BUp;Z) = Zcy, c2,-.. ¢, deg(c,) =2r (5.20)

All this can be found in [86], [128] (and many other books).

5.2.3 Niceness theorems for Hopf algebras

The structure of a Hopf algebra is a heavy one. Indeed at one time they were thought
to be so rare that each and every one deserves the most careful study, [90]. This is
not the case anymore. Hopf algebras abound. Still the structure is not strong enough
to produce good niceness theorems. However if one adds conditions like graded
and connected some strong structure theorems emerge. These are e.g. the Leray and
Milnor — Moore theorems which will both be described immediately below. In addi-
tion there is the Zelevinsky theorem, a structure theorem due to Griinenfelder, [66]
and much more, see e.g. [123]. However, whether the various available classifica-
tion theorems for Hopf algebras qualify as niceness theorems is debatable. I think
mostly not.

5.2.3.1 The Leray theorem on commutative Hopf algebras

Let H be a commutative graded connected Hopf algebra of finite type over a field
of characteristic zero. Then the underlying algebra is commutative free. There is
also a graded commutative version. The original theorem appears in [109]. For an
up-to-date short account see [136]. There are all kinds of generalizations, e.g. to an
operadic setting, see [135], [113], [57].
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5.2.3.2 The Milnor — Moore theorem on cocommutative Hopf algebras

Let H be a cocommutative graded connected Hopf algebra of finite type over a
field of characteristic zero. Then the underlying algebra is the universal enveloping
algebra of the Lie algebra of primitives P(H) of H, [127].

This is the algebraic incarnation referred to in 5.2.1.6 above.

The Milnor—Moore theorem is a dual of the Leray theorem. To realize this recall
from subsection 5.2.2 above that Ug is the free object in Ass on the object g € Lie.

5.2.4 Large vs nice

There is a tendency for (really) nice objects to be big (or very small). A prime
example is
Symm = Z[hy, k2, h3, ...] (5.21)

the ring of polynomials over the integers in countably infinite many commuting
variables over the integers. This object will be discussed in some detail further on.
Inversely big objects have a better chance of being nice.
In this subsection I give some examples of this phenomenon.

5.2.4.1 Big projective modules are free

This result is due to Hyman Bass, [12]. For a precise statement see loc. cit. (corollary
3.2). The key ingredient is the following elegant observation. !0
If P® Q = F with F a non-finitely generated free module, then PG F = F .
The proof is simplicity itself and clearly shows the power and usefulness of in-
finity.
FEXFOF®---=2PoQoP®Q®- -
X POFOF® --=POF

5.2.4.2 General linear groups in various dimensions

Let k be the field of real numbers, complex numbers or even the quaternions. The
general linear groups GL, (k) for finite natural numbers are homotopically and co-
homologically far from trivial.

Things change drastically in infinite dimension.

10 Hyman Bass calls it “an elegant little swindle™.
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5.2.4.3 Kuiper’s theorem, {100]

Let H be real or complex or quaternionic Hilbert space. Then the general linear
group GL(H) is contractible.

There is also an important equivariant extension due to Graeme Segal, [146].

Much related is Bessaga’s theorem, [19], [20], to the effect that every infinite
dimensional Hilbert space is diffeomorphic with its unit sphere.

Kuiper’s famous theorem is the key to the classification of Hilbert manifolds,
[28], [46], [47], [131], [132].

5.2.4.4

Here is a table on differential topology in various dimensions as things seem to be
constituted at present.

1 2 3 4 5 6 ‘e < oo oo
Real Basy|difficult difficult; g09d gopd go9d r(?al
easy boapw |techniques | techniques techniques | nice

Here ‘good techniques’ refers mainly to Smale’s handlebody theory. The acronym
‘boapw’ means ‘best of all possible worlds’ and refers to the fact that all R” for n # 4
have a unique differentiable structure, but R* has over countably infinite different
differentiable structures.!!

5.2.5 Extremal objects and niceness

In the world of optimization theory and variational calculus and analysis it is rel-
atively well known that extremal objects tend to be nice (have lots of symmetry),
even when bifurcation occurs.

There are also various notions of minimality in algebra and topology and these
also tend to be ‘nice’. For instance the Sullivan minimal models for rational homo-
topy, see [50], are definitely nice.

In the world of operads and PROP’s etc. there are by way of example the follow-
ing theorems, see [126].

* The minimal resolution of Uss is a differential graded free operad.
* The minimal resolution of £ieB is a free differential graded PROP.

Sullivan minimal models and operads, PROP’s etc. are highly technical notions
and giving details would take me far beyond the scope and intentions of this paper.
I have no doubt that there are more niceness results for minimal resolutions.'?

' This is a fact that tends to make ‘multiple world’ enthusiasts happy.

12 There are at least three meanings for the word ‘resolution’ and the phrase ‘minimal resolution’ in
mathematics: resolution of singularities, resolution of a module in homological algebra, resolution
in (automatic) theorem proving. Outside mathematics there are many more additional meanings.
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5.2.6 Uniqueness and rigidity and niceness

For instance Symm, see (5.21) above and below, is unique and rigid as a cor-
ing object in the category of unital commutative rings and MPR, the Reutenauer-
Malvenuto-Poirier Hopf algebra of permutations is rigid and likely unique, see [77],
[78]. And indeed they are very nice objects.

5.2.7 Counterexamples and paradoxical objects

Not only objects and constructions can exhibit the ‘niceness phenomenon’ but also
counterexamples. This subsection contains a few examples of that.

5.2.7.1 The Alexander horned sphere

First the construction as illustrated by the picture below. Take a hollow cylinder
closed at both ends and bend around so that the two ends face each other. Now from
each end extrude a horn and interlock them as shown; there result two locations of
disks facing each other. Repeat ad infinitum.

Fig. 5.1 Alexander horned sphere [Credit: MathWorld]

The Alexander horned sphere together with its interior is (homeomorphic to) a
topological 3-ball. The exterior is not simply connected. This shows that the ana-
logue of the Jordan-Schénflies theorem from dimension 2 does not hold in dimen-
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sion 3. For some more information on the Alexander horned sphere and its uses
see [1].

Somewhat surprisingly (to me in any case), the filled Alexander horned sphere
can be used for a monohedral tiling of R3, [154].

5.2.7.2 The approximation property

A Banach space is said to have the approximation property if every compact operator
is a limit of finite rank operators.

Equivalently a Banach space X has the approximation property if for every com-
pact subset K C X and every £ > O there is an operator T : X — X of finite rank such
that || Tx—x||< eforallx € K.

Every Banach space with a (Schauder) basis has the approximation property. This
includes Hilbert spaces and the £” spaces.

However, not every Banach space has the approximation property. In 1973 Per
Enflo, [48], constructed a counterexample.

I do not think this counterexample qualifies as a nice one. However the very nice
Banach space of bounded operators on £ is also a counterexample, [151].13

5.2.7.3 The Banach-Tarski paradox

In 1924 Stefan Banach and Alfred Tarski proved the following seemingly bizarre
statement, [10].

For two bounded subsets A, B of a Euclidean space of dimension at least three
with nonempty interior there exist finite decompositions into disjoint subsets

A=AU---UA; B=B/U---UB;

such that A; is congruent to B; for all { = 1,...,k, i.e. A; becomes B; under a Eu-
clidean motion.

This is now known as the strong form of the Banach-Tarski paradox. It does not
hold in dimensions 1 and 2. A consequence is:

A solid ball can be decomposed into a finite number of point sets that can be
reassembled to form two balls identical to the original; see Fig. 5.2 below.

Here ‘move’ means a Euclidean space move: a combination of translations, rota-
tions and reflections. For some more information on the Banach-Tarski paradox see
[160].

Thus ‘move’ is simple enough. The decomposition, however, is complicated. For
one thing at least some of the components must be nonmeasurable. Also things are in
three dimensions and Cantor-like sets in three dimensions are difficult to visualize.
Fortunately Stan Wagon found a two dimensional analogue in hyperbolic space and
the picture is remarkably beautiful; see Fig. 5.3 below.

13 Sometimes ‘Szankowski’ is rendered ‘Shankovskii’ which makes it quite hard to find the paper.
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decompose

move

Fig. 5.2 Banach-Tarski paradox: two balls out of one

Fig. 5.3 Banach-Tarski paradox: hyperbolic version [Credit: MathWorld]

97
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5.2.7.4 Julia and Fatou sets

Here is a question not untypical of those that were asked in general (point-set) topol-
ogy almost a century ago when people started to realize just how strange topological
spaces could be.

Is it possible to divide the square into three regions so that the boundary between
two of them is also the boundary between the two other pairs of regions.

The first answer was given by L. E. J. Brouwer in the form of a simple construc-
tion repeated ad infinitum. However, the resulting picture is absolutely not beautiful.
Nowadays there are the basins of attraction of discrete dynamical systems such as
x+ x> — 1 which has three basins of attraction (Fatou sets), one for each of the roots
of x* — 1 and each pair has the same boundary (Julia set), see {15].

This is part of the world of fractals and (deterministic) chaos, [145], and many of
the pictures are extraordinarily beautiful, [11].'*

5.2.7.5 Sorgenfrey line

As a set the Sorgenfrey is the set of real numbers. It is given a topology by taking as
a basis the half-open intervals [a,b),a < b. This topology is finer than the usual one.
For instance the sequence {n~'},en converges to zero but {—n~"},cn does not. The
Sorgenfrey line serves as a counterexample to several topological properties, [149].
The point here (as far as this paper is concerned) is not that such counterexamples
exist but that there is such a nice regular one. There is also a Sorgenfrey plane, loc.
cit. For some more information see also [115].

5.2.7.6 Exotic spheres

A further example that fits in this section is that of exotic spheres (Milnor spheres).
This deals with existence of differentiable structures on topological spheres, espe-
cially the seven dimensional ones, that differ from the standard one. They were the
first examples of this phenomenon of distinct differentiable structures on the same
topological manifold. This topic is rather more technical, and so I content myself
with giving a reference to an internet accessible document, [141].

5.2.8 An excursion into formal group theory

A one dimensional formal group law over a commutative unital ring A is a power
series F(X,Y) in two variables with coefficients in A such that

14 Beautiful and arresting enough that the Sparkasse in Bremen organized an exhibition of them in
1984.
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F(X,0)=X,F(0,Y) =Y, F(X,F(¥,2)) =F(F(X,Y),2) (522

Two examples are the multiplicative formal group law and the additive formal group
law

Gu(X,Y)=X+Y+XY, Gu(X,¥)=X+Y (5.23)

Both examples are nontypical in that they are polynomial; polynomial formal group
laws are very rare.

More generally for any n, including n = o, an n-dimensional formal group over
A is an n-tuple of power series in two groups of n indeterminates F(X;Y) such
that

F(X;0)=X,F(0;Y)=Y,F(X;F(Y;Z)) = F(F(X;Y);Z) (5.24)

However, certainly from the point of view of applications, one dimensional formal
groups are by far the most important, especially one dimensional formal groups over
the integers, rings of integers of algebraic number fields, and over polynomial rings
over the integers.

The only other that currently seems important is the infinite dimensional formal
group W of the Witt vectors which is defined by the same polynomials that define
the addition of Witt vectors; see the next subsection 5.2.9.

A standard reference for formal groups is [74].

5.2.8.1 Lazard commutativity theorem

Let A be a ring that has no elements that are simultaneously torsion and nilpo-
tent. Then every one dimensional formal group over A is commutative; i.e. satisfies
F(X,Y)=F(Y,X).

5.2.8.2 Universal formal groups

Given a formal group F(X,Y) over A and a morphism of rings ¢ : A — B one obtains
a formal group o, F(X,Y) over B by applying « to the coefficients of F(X,Y).

A one dimensional commutative formal group F.(X,Y) over a ring L is called
universal! if for every one dimensional formal group F(X,Y) over a ring A there is
a unique morphism of rings of : L — A such that af F (X,Y) = F(X,Y).

That such a thing exists and is unique is a triviality. What is very remarkable
is the theorem of Lazard, [103], that L is the ring of polynomials in an infinity of
indeterminates over the integers. The standard proof is awful and highly computa-
tional.

15 This is a rather different ‘universal’ than e.g. in ‘universal enveloping algebra’. The L in these
sentences stands for Lazard.
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5.2.8.3 Morphisms

A morphism of formal groups from an m-dimensional formal group F(X;Y) to an n-
dimensional formal group G(X;Y) is an n-tuple of power series in m indeterminates
¢ (X) such that

$(0) =0, G(¢(X);$(Y)) = ¢(F(X;Y))
If $(X) =X mod (degree 2) the morphism is said to be strict.

5.2.8.4 Logarithms

Let A be a ring of characteristic zero so that the canonical ring morphism A —
A®z Q = Ag is injective; let F(X,Y) be a one dimensional formal group over A.
Then over Ag there exists a power series f(X) = X + X2 + - -- such that

FX,Y) = fH{fX)+£()) (5.25)

Here f~! is the compositional inverse of f, i.e. f~'(f(X)) = X. This f is called
the logarithm of F. In the case of the multiplicative formal group, see (5.23), the
logarithm is

log(1+X)=x-2"1x243"1x3 47'x%4...

Indeed, log(1+X +Y +XY) = log(1 + X) +log(1 +Y). The terminology derives
from this example. The logarithm of a formal group is a strict isomorphism of the
formal group to the additive formal group; but over Ag.

It is at the level of logarithms that the recursive structure of formal groups ap-
pears; a recursive structure that was totally unexpected.

There are also logarithms for higher dimensional commutative formal groups.

5.2.8.5 p-typical formal groups

A one dimensional formal group over a characteristic O ring is p-typical if its loga-
rithm is of the form

F&x) =X +bXP + b XP -

There is a better definition, see [74], which works always and also in the higher
dimensional case. But this one will do for the purposes of the present paper.

Over a Z(,)-algebra every formal group is strictly isomorphic to a p-typical one,
[30]. If the ring over which the formal group is defined is of characteristic zero the
isomorphism is easily described: take the logarithm and change all coefficients of
non-p-powers of X to zero.
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5.2.8.6 The universal p-typical formal group, [71]

Take a prime number p and consider the following ring with endomorphism

Z[V] = Z[Vl RZR%RE -], l[/(V,,) V”’ (5.26)
Define i et
wV)= Y prv vy (5.27)
N

Thus the first few of these polynomials are:

(V) =p~'wi,
(V) =p vy +p” 'V,
(V) = p=3vivivp +p_2V1V’ +p_2V7V’ +p v

This sequence of polynomials has both a left and a right recursive structure.
The left recursive structure is

o, (V) = Zp Wiy(e,_i(V)) (where 0g(V) =1)

and the right recursive structure is
Ji—=1 fi= 1
o (V) = 0t (VIV) +ouaa(VIVY -+ (VIVE  +V,
Now consider

AX) = X+a(V)X?+a(V)XP +a3(V)XP + - (5.28)
FXY)=f (X)) + ()

The left recursive structure is used to prove that Fy(X,Y) is integral, i.e. has its
coefficients in Z([V] and hence is a formal group over Z[V] and, subsequently, to
prove that it is the universal p-typical formal group which means that every p-typical
formal group can be obtained from it by a suitable ring morphism from Z{V|.

The right recursive structure then leads to important applications to e.g. complex
cobordism theory in algebraic topology and Dirichlet series in number theory.

The important thing here is not that a universal p-typical formal group exists but
that it has these very simple and elegant recursive structures.

The universal p-typical formal groups can be simply fitted together to give a
construction of the universal formal group.

5.2.8.7 Formal groups from cohomology

Let #* be a multiplicative extraordinary cohomology theory with first Chern classes.
What all these words really mean is not so important at the present stage. Suffice
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that many of the better known cohomology theories are like this. The point is that
under these circumstances there is a universal formula for the first Chern class of a
tensor product of line bundles in terms of the first Chern classes of the factors.

ai(§®n) =Y ajci(§)ei(n)

iLJ
defining a formal group over #*(pr).
Fe(X,Y) =Y X'V, oy € h*(pt)
Here are some examples.

* h* = H*, ordinary cohomology, Fy = G, the additive formal group.

* h* =K, complex K-theory, Fx(X,Y) = X +Y +uXY, where u is the Bott peri-
odicity element; a version of the multiplicative formal group.

e h* = MU*, complex cobordism. In this case the formal group has logarithm

cpt
(X)= Z [ ]X "*1 Here CP" is n-dimensional complex projective space
n=0 "
and [CP"] is its complex cobordism class in MU*(pt). This profound result is
due to A S Mishchenko, see appendix 1 of [134].
* h* = BP*, Brown-Peterson cohomology, the ‘prime p part’ of complex cobor-
dism. Its formal group is the p- typiﬁcation of the one of complex cobordism, so

-1

that its logarithm is fzp(X z [cer ]X”

r=0 P

For more details see [74] and the references given there and especially [140].

There is more. The formal group of complex cobordism is the universal one,
[138]. This remarkable result is due to Quillen.

The remarkable, elegant and nice aspect here is that in terms of cobordism the
unijversal formal group is so simple and regular.

It follows from the Quillen theorem that Fgp(X,Y) with logarithm fgp(X) is the
universal p-typical formal group law. But there is also an explicit construction of
the universal p-typical formal group law, (5.28). This has all kinds of consequences
for complex cobordism and Brown-Peterson cohomology, see [73], [74], [140].

Quillen’s theorem also goes a fair way towards establishing that complex cobor-
dism is the most general cohomology theory.

5.2.9 The amazing Witt vectors and their gracious applications

Let CRing be the category of unital commutative associative rings. The big Witt
vectors constitute a functor W : CRing — CRing which has an amazing number of
universality properties. For a fair amount of information on this functor see [70] and
the references quoted there.
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5.2.9.1 Definition of the functor of the big Witt vectors

As a set W(A) = A(A) is the set of all power series with coefficients in A with
constant term 1.

WA) =AA) = {1 +oqt+opt® + ot +-- - oy €A} (5.29)

Multiplication of such power series defines an Abelian group structure on W(4)
with as neutral element the power series 1. This is the underlying group of the to be
defined ring structure on W (A). The multiplication on W (A) is uniquely determined
by the requirement that the very special power series (1 — xt)~! multiply as

(t=xt) " % (1—yr)™' = (1 —xyt)™! (5.30)

and the demands of distributivity (of multiplication over addition) and functoriality.
Just how this works out will be indicated immediately below.
The functoriality of W(—) is component-wise, i.e. it is given by

W)+t +oat+-) = 1+ flo)t + flon)f® + flea)P + -+ (5.31)

The functor W is obviously representable by the ring Symm = Z[h1,h,hs,...] of
polynomials in a countable infinity of indeterminates over the integers. The functo-
rial correspondence is:

1+ ot + ot +ost> 4+ f: Symm — A, f(h,) = oy (5.32)
It is convenient to view the &, as the complete symmetric functions in another count-
ably infinite set of indeterminates &, &3, &3, ... which can be encoded as

1
Vbt +ht? it + =] (5.33)
ity -z

Now let &), k5,5, --- be a second set of commuting indeterminates viewed as the
complete symmetric functions in 11, 732,73, - - that commute with the &. Then dis-
tributivity requires that

1
(l+h|t+h2t2+h3t3+-~-)*(1+h’lt+h’2t2+h’3t3+~--)=Hm (5.34)
ij U

This makes sense because the right hand side of (5.34) is symmetric in the £ and
in the 77 and so, by the fundamental symmetric functions theorem there are unique
polynomials

Hl(h1§h/1),nz(hl,h2§ Il)hIZ))H3(h17h2yh3; ’l’ /21hg)a (535)

such that
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(L byt +hot? + hat> 4 ) (1H iyt + R+ B3 ) =

= 1+ TTy (g 1)t + Ty iy K+ Ty (hy o, By By )2 - O30

(That the multiplication polynomials IT, depend only on the first n #; and 4] is easily
seen by degree considerations.)

By functoriality these polynomials determine the multiplication on each W(A)
in the sense that for a(t) = 1 +at +ast®* + a3t +--- and b(t)=1+byt + byt +
b3t34---- in W(A) their product is

a(t)*b(t) =1+11 ([11 ;bl)t+H2((l| ,2; by ,bz)tz +H3(a1 ,a2,a3;b) ,bz,b3)t3 + -
Of course the sum in W(A) is also defined by universal polynomials. These are

Zu(hi,e s hashl, ) =Y hil'; where ho = hy = 1
i+j=n

Another way of expressing most of this is to say that

hn’_’zn(hl®l,"',hn®1;1®hl,“';l®hn)

hy— I, (@1, @ L1Qk, -, 10 k) (5.37)

define on Symm (most of) the structure of a coring object in the category CRing,
which hence, via (5.32) defines a functorial ring structure on the W (A).

5.2.9.2 Lambda rings and sigma rings

A pre-sigma-ring (pre-o-ring) is a unijtal commutative ring A that comes with extra
nonlinear operators that behave (in a very real sense) like symmetric powers. That
is, there are operators

o:A—Aji=1,2,--;01=id (5.38)
such that

O-n(x'*‘y) = o‘n + Z Gl O-n :(y +sz( ) (539)

It is often useful to have the notation oy for the operator that takes the constant
value 1. This notion is equivalent to the better known one of a pre-lambda-ring (pre-
A-ring) but works out just a bit better notationally. The two sets of operations are
related by the Wronski-like relations

Z(lo, )ni(x) =0

The lambda operations behave like exterior powers.
. Let ¢ : A — B be a morphism in CRing and let both A and B carry pre-sigma-
ring structures. Then the morphism is said to be a morphism of pre-sigma-rings if it
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commutes with the sigma operations, i.e. ¢(c/(x)) = 62 (¢(x)). A pre-sigma-ring
is a sigma ring if the operations satisfy certain universal formulas when iterated and
when applied to a product. This is conveniently formulated as follows.

Consider the ring of big Witt vectors W(A) and write an element of it (formally)
as

|
oty =1+t +ol+ot®+ - = 7—5=
i (l_éit)

Then
ofa0)= T (1-&8& &~ (5.40)
l’]CiszSi,,
(when written out in terms of the ¢; which can be done by the usual symmetric
function yoga). This defines a pre-sigma-ring structure on W (A).
A pre-sigma-ring A is a sigma-ring if

i :A—W(A),x— 1+0 ()t + G (x) 2+ o3 (X) + -+

is a morphism of pre-sigma rings. It is a theorem that W(A) is in fact a sigma-ring.
This involves the study of the morphism

oA w(a) - w(Ww(A)) (5.41)

which I like to call the Artin-Hasse exponential.'
A ring morphism between sigma-rings is a sigma-ring morphism if it is a mor-
phism of pre-sigma-rings. Let SigmaRing be the category of sigma-rings.
Let
s1:W(A) —4Aa(t)— o (5.42)
be the morphism of rings that assigns to a 1-power-series its first coefficient. The
Witt vectors now have the following universality property. Let S be a sigma-ring,

A aring and ¢ : § — A a morphism of rings, then there is a unique morphism of
sigma-rings ¢ : S — W(A) such that the following diagram commutes

W(A)

p l
sy
[

§—A

So W(A) =L, A is the cofree sigma-ring over the ring A. Or in other words the
functor W(—) : Cring — SigmaRing is right adjoint to the functor the other way
that forgets about the sigma structure.

16 A distant relative of this morphism, viz Wy=(k) — W (W= (k)) plays an important role in class
field theory. Here k is a finite field and Wy~ is the quotient of the p-adic Witt vectors of the big Witt
vectors.



106 Hazewinkel M.

5.2.9.3 The comonad structure on the big Witt vectors

A comonad (also called cotriple) (T, u,€) in a category € is an endo functor T of
% together with a morphism of functors it : T — T'T and a morphism of functors
€:T — id such that

(Twpw=uT)n, (eT)u=id=(Te)u (5.43)

And a coalgebra for the comonad (7, 1£,€) is an object in the category € together
with a morphism ¢ : C — TC such that

=id, (T(0))o = (urc)o (5.44)

It i‘s now a theorem, [70], that the Artin-Hasse exponential (5.41), which is func-
torial, together with the functorial morphism (5.42) form a cotriple and that the
coalgebras for this cotriple are precisely the sigma-rings.

5.2.9.4 The sigma and lambda ring structures on Symm

Consider
Symm = Z[hy, hy, h3,--] CZ[&),6,&3,- -] (5.45)

as before. There is a unique sigma-ring structure on Z[£] determined by

ou(&) = €& (5.46)

(The corresponding lambda operations are A, (&;) = &, 4,(&;) = 0 for n > 2 so that
the §,~ are like line bundles and this is a good way of thinking about them.) The
subring Symm is stable under these operations and so there is an induced sigma-
ring structure on Symm.
It is now a theorem that Symm with this particular sigma-ring structure is the

free sigma-ring on one generator. More precisely:

‘ For every sigma ring S and element x € S there is a unique morphism of sigma-
rings Symm — S that takes A; into x.

The universality properties described in subsections 5.2.9.2, 5.2.9.3, 5.2.9.4 are far
from unrelated; see section 5.3.3 below. A totally different universality property of
the Witt vectors is the following one.

5.2.9.5 Cartier’s first theorem

T.h.e (infinite dimensional) formal group of the Witt vectors ‘is’ the sequence of ad-
dition polynomials Xy,2;,... in X;,X,,--- ;¥1,Y2,---. This formal group is denoted
W. A fourth universality property of the Witt vectors holds in this setting.
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Given two formal groups F and G of dimensions m and n respectively a mor-
phism of formal groups & : F — G is an n-tuple of power series with zero constant
terms o, -+ , 0, in m variables such that

G(al (X)7 : 1all(X);al (Y): o )an(Y)) = (al(F(XaY))a' . xan(F(X)Y)))
(547)
A curve in an n-dimensional formal group F is simply an n-tuple of power series
in one variable, say, ¢. In W consider the particular curve y(f) = (£,0,0,---). Then
Cartier’s first theorem says that for every formal group F and curve 'y( ) in it, there
is a unique morphism of formal groups W — F that takes y(¢) into ¥(z).

5.2.10 The star example: Symm

Here is a list of most of the objects with which this subsection will be concerned.
Those which have not already been defined above will be described in section 5.3.3
below.

o Symm = Z[hy,hy,---] = Zci,c2,- -] C Z[&1,&2,-++], the ring of symmetric
functions in an infinity of indeterminates. Here h,, is the n-th complete symmetric
function in the &’s and the ¢, stand for the elementary symmetric functions. I am
writing ¢, rather than e, because in the present context the ¢, will correspond to
Chern classes

e U(A), the universal lambda ring on one generator

+ R(W), the representing ring of the functor of the big Witt vectors; see subsection
5.2.9 aboye

* R(S) = @R Sy), the direct sum of the rings of (the Grothendieck groups of)
complex" rgpresentatlons of the symmetric groups with the so-called exterior
product; if p is a representation of S, and 0' is a representation of the sym-
metric group on s letters Sg then po = I”dsrx‘s (p ® 0). By decree R(Sp) is
equal to Z. There is also a comultiplication: if ois a representation of S,

2 Ress % s ). Together with obvious unit and counit morphisms

ri-s=n
this defines a Hopf algebra. (The antipode comes for free because of the graded

connected situation.)

* R.u(GL..), the (Grothendieck) ring of rational representations of the infinite lin-
ear group

(Z) the value of the exponential functor from [81] on the ring of integers
*+ U(W), the covariant bialgebra of the formal group of the Witt vectors
H*(BU;Z), the cohomology of the classifying space of complex vector bundles,
BU
+ H,(BU;Z), the homology of the classifying space BU

These are all isomorphic and that implies that Symm is very rich in structure in-
deed. Nor is that all. For instance each of the components R(S,) of R(S) is a lambda
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ring in its own right (inner plethysm). Further the functor of the big Witt vectors is
lambda ring valued. However, this paper is not about Symm and its extraordinar-
ily rich structure,!” but about niceness results. That includes ‘nice proofs’. That is
proofs of isomorphism between all these objects that derive from their universality,
(co)freeness, ... properties and rely minimally on calculations. To what extent there
are currently such proofs will be discussed below in subsection 5.3.3.

Two more objects that fit in this picture are the rational Witt vector functor in its
role in the K-theory of endomorphisms, [4], and the Grothendieck group K(P,4) of
polynomial functors Mod, — Mody, where A is an algebra over a field k and Mod,4
is the category of right A-modules, [117]. If A = & this object is again isomorphic to
the nine objects listed above.

The various isomorphisms and relations concerning which I think I have some-
thing to say are depicted in the diagram below.

H*(BU;Z) H,(BU;Z)
X
UWw) Symm L R,a(GL&)

r > X /

R(W) R(S)

Ha M,
\ . \
U(A) K(Py)
\\ Ho2
Hol
E(Z)

The bottom object here, viz E(Z), has not yet been described in any way. It
is again defined by an adjoint functor situation and, again, it is one which picks
up extra structure. It will be described and discussed briefly in section 5.3.3 be-
low.

Also it seems from the diagram that the Hopf algebra R(S) = EDR(S,) is the

n=0
central object rather than Symm.

171 plan a future paper on that; meanwhile see [70].
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5.2.11 Product formulas

The simplest (arithmetic) product formula concerns the real and p-adic absolute
values of a rational number
1
ol =[]l
r

where the product on the right is over all prime numbers p. There are more formulas
of this type. This leads to a view of things that is expressed as follows by Yuri Manin
in [119], Reflections on arithmetical physics, pp 149ff.

“Now we can see the following pattern

- (at least some) essential notions of real and complex calculus and geometry have
their adelic counterparts;

« adelic objects have a strong tendency to be simpler than their Archimedean com-
ponents, e.g. the adelic fundamental domains of arithmetical discrete subgroups
of semisimple groups usually have volume 1 (the Siegel-Tamagawa-Weil philos-
ophy...);

« due to this fact and to product formulas like (2) or (3) embodying the idea of
democracy for all topologies, information on the real component of an adelic
object can be read off either from the real component or the product of the p-adic
components for all p’s.

With some strain one can generalize and state the following principle which is
the main conjecture of this talk.

On the fundamental level our world is neither real, nor p-adic; it is adélic. For
some reasons reflecting the physical nature of our kind of living matter (e.g., the fact
that we are built of massive particles), we tend to project the adélic picture onto its
real side. We can equally well spiritually project it upon its non-Archimedean side
and calculate most important things arithmetically.”

There are applications of this idea to the Polyakov measure (Polyakov partition
function), loc. cit., string theory, [58], Yang-Mills theory, [6], and much more, see,
for a start, (the bibliography of) [95]. Add to this that the p-adic versions are often
easier to handle and one finds some good justification for the discipline of p-adic
physics.

5.3 Some first results and theorems

5.3.1 Freeness theorems

The only general freeness theorem that I know about is the one from [57]. This one
says that cogroups (cogroup objects) in the category of algebras over an operad are
free. This covers for instance one of the Kan results, the Leray theorem, the Milnor—



110 Hazewinkel M.

Moore theorem and probably several more. At this stage it is unclear how far it
goes.

I don’t think it can be made to take care of the subobject freeness theorems; but
there probably is a general theorem, yet to be formulated and proved, that can take
care of those.

5.3.2 On the Lazard universal formal group theorem

The Lazard universal formal group theorem says that there exists a universal (one
dimensional) commutative formal group (trivial) and that the underlying ring is free
commutative polynomial in an infinity of indeterminates (surprising and far from
trivial). The standard proof is long, laborious, and computational, even when sim-
plified and streamlined as in [60], see also [140].

Having a candidate universal formal group available, as in [72], [74] helps a great
deal, see [74], pp 27-30. But the proof is still mainly computational; also the con-
struction of the candidate universal formal group involves choices of coefficients,
which mars things. One dreams of a proof which mainly relies on universality prop-
erties.

In this connection there is a rather different proof due to Cristian Lenart, [108],
which seems to have promising aspects. One ingredient, which I consider promising,
is the following. Consider the power series

foX) =X +bX>+b3X> + -
over Z[b). Here the b’s are indeterminates. Now form

F(X,Y) = fi(f; ' (X)+ £, (X))

This is of course a formal group over Z[b]. It is proved'® in loc. cit. that the coeffi-
cients of F(X,Y) generate a free polynomial subring, L, of Z[b] and that regarded as
a formal group over the subring L F,(X,Y) is universal. Of course L is truly smaller
than Z([b]. To start with 2b, € L, but b, ¢ L.

This next bit is pure speculation. The first Cartier theorem on formal groups says
that the formal group of Witt vectors, W, represents the functor ‘curves’. This is
a rather different universality property for formal groups. The covariant bialgebra
of W is Symm. One wonders whether this can be used to prove the Lazard theo-
rem.

18 The result is nice; I consider the proof highly unsatisfactory.
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5.3.3 Objects and isomorphisms in connection with Symm

This whole subsection is concerned with the objects and isomorphisms in the dia-
gram at the end of section 5.2.10.

5.3.3.1 The isomorphism ‘Ha’ between R(W ), the representing ring of the
functor of the big Witt vectors and U(A ), the free lambda ring on one
generator

Here is a synopsis of the relevant bits of structure. The ring R(W) represents a
(covariant) functor that carries a comonad structure, and the coalgebras for this
comonad are precisely the lambda rings. That is all that is needed.

Let % be a category and let (T, i, €) be a comonad in ¥. Now let (Z,z € T(Z))
represent the functor 7. That is, there is a functorial bijection €(Z,A) — T (A), f —
T(f)(z). The comonad structure gives in particular a morphism ¢ : 7 — TZ, viz the
image of idz under yz : T(Z) = €(Z,Z) — T(T(Z)) = €(Z,T(Z)). This defines
a ‘coalgebra for T" structure on Z. Now let (A, o) be a coalgebra for the comonad
T and let & be an element of A. Consider the element o{a) € T(A) = F(Z,A).
This gives a unique morphism of T-coalgebras that takes z into o. There are of
course a number of things to verify both at this categorical level and to check that
these categorical considerations fit with the explicit constructions carried out in the
previous subsections. This is straightforward.

Thus the isomorphism ‘Ha’ is a special case of a quite general theorem and the
proof uses no special properties but only universal and other categorical notions.
This is the kind of proof I would like to have for all the isomorphisms in the diagram.

5.3.3.2 The isomorphism ‘Z’ between R(S) and Symm

This is handled by the Zelevinsky theorem, [164] and [69], chapter 3. The Zelevin-
sky theorem deals with PSH algebras (over the integers). The acronym ‘PSH’ stands
for ‘Positive-Selfadjoint-Hopf’. Actually it is about (nontrivial) graded connected
positive self-adjoint Hopf algebras with a distinguished (preferred) homogenous ba-
sis. The Hopf algebra is also supposed to be of finite type so that each homogenous
component is a free Abelian group of finite rank.

An inner product is defined by declaring this basis to be orthonormal. The pos-
itive elements of the Hopf algebra are the nonnegative (integer coefficient) linear
combinations of the distinguished basis elements. Let m and p denote the multipli-
cation and comultiplication respectively.

Selfadjoint (selfdual) now means

(m(x@y),z) = (x®y, 1(2))
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and positivity means that if the elements of the distinguished basis are denoted by
w; etc., and
m(w @)=Y o 0, plw)=b" 0w
r ns
then o ; > 0 and b7* > 0. Suppose now that there is precisely one among the dis-

tinguished basis elements that is primitive,'® then (the main part of) the Zelevinsky
theorem says that the Hopf algebra in question is isomorphic (as a Hopf algebra) to
Symm, possibly degree shifted.

An example of a PSH algebra is R(S):

« The distinguished basis is formed by the irreducible representations of the vari-
ous S,

 The positive elements are the real (as opposed to virtual) representations, and so
multiplication and comultiplication are positive.

» The selfadjointness comes from Frobenius reciprocity

e The Hopf property is handled by (a consequence of) the Mackey double coset
theorem.

Using the isomorphism all structure can be transferred making Symm also a PSH
algebra. An odd thing is that this is not proved directly. The distinguished basis
turns out to be formed by the Schur functions. The problem is positivity. There
seems to be no direct proof in the literature that the product of two Schur functions
is a nonnegative linear combination of Schur functions.

I used to think that this theorem did not count in the context of the diagram
because it uses such seemingly non-algebraic things as positivity and distinguished
basis. However in the setting of R(S) these are, see above, entirely natural.

There is one more thing I would like to say in this context. The fourth and final
step of the proof of the Zelevinsky theorem (in the presentation of [69]) essential
use is made of something called the Bernstein morphism. This is a morphism

H — H®Symm

defined for any commutative associative graded connected Hopf algebra H. If one
takes H = Symm this is precisely the morphism that defines the multiplication on
the big Witt vectors. This is a “coincidence” that cries out for further investigation.
For a completely different way of establishing that Symm and R(S) are isomorphic
see [7]. For still another and very elegant proof of this result see [111], [112]. It
seems that the theorem actually goes back to Frobenius, [59].

5.3.3.3 The isomorphism ‘S’ from R(S) to R, (GL.)

This is Schur-Weyl duality which has its origins in Schur’s thesis of 1901, [143].
The subject of Schur-Weyl duality has by now evolved into what is practically a

19 There is always at least one because of graded connectedness (and nontriviality).
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small specialism of its own. A search in the MathSciNet and ZMATH databases
gives numerous results. There are quantum and super versions and there are interre-
lations with such diverse fields as quantum and statistical mechanics, tilting theory,
combinatorics, random walks on unitary groups, ... . A selection of references is
[16], [43], [45), [61], [63], [64], [65], [83], [96], [110], [143], [144], [161], [163],
[71, [117], [49].

Here is what is probably the simplest incarnation of Schur-Weyl duality. Let V
be a finite dimensional vector space over a field of characteristic 0. Form the n-th
tensor product

T"V)=V® --®V

The symmetric group S, acts on this by permuting the factors, which gives a finite
dimensional representation of S, that can be decomposed into its isotypic compo-
nents

T"(V) = (P Homys, (Ex, T"(V) ® Ex) = PF(V)QE; (5.48)

functorially in V. Here the Ej are the distinct irreducible &S, modules. If now A :
V — V is a linear transformation F(A) : Fr(V) — Fr(V) is an ‘invariant matrix’ in
the sense of Schur, [143]. This is taken from [117].

Taking invertible A one obtains a representation F (V') of GL(V). This can also
be seen as coming from the action of GL(V) on T"(V) defined by g(vi ®---®v,) =
gv1 ® - ® gy, noting that this action commutes with the S, action on T"(V) and
using the double commutant theorem.

The middle term in (5.48) makes it clear that this is some kind of duality. What I
would really like is to have is a pairing R(S) X Ry« (GL) — Z defined directly, which
then gives this duality. At the ‘finite level’ described above this can probably be
done by looking at the trace form (X, Y) = Trace(XY) on End(7"(V)), [64], section
9.1; [163], page 19. But not, it seems, without bringing in a lot of representation
theory.

5.3.3.4 On a possible isomorphism ‘L’ between R(S) and H,(BU;Z)

This is mostly speculative. First both rings (as Abelian groups) have a natural basis
indexed by partitions. Second there is a bit of positive evidence in [79], where in
section 11 a (nontrivial, i.e. with jumps) family of representations is constructed of
Sp4m that is parametrized by the Grassmann manifold Gr,(C"™).

5.3.3.5 On the isomorphism ‘Du’ between H*(BU;Z) and H,(BU;Z)
This is a matter of homology—cohomology duality for oriented manifolds. Plus au-

toduality of the Hopf algebras involved. (Both carry natural Hopf algebra struc-
tures.)
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5.3.3.6 On the isomorphism ‘SP’ between H*(BU;Z) and Symm

First one defines Chern classes, for instance as in [128], chapter 14, the definition
of the first Chern class that is in [94] is one [ particularly like.

The i-th Chern class associates to a complex vector bundle V over a suitable space
X an element c;(V) of the cohomology group H*(X;Z). One of the more important
properties of the Chern classes is ‘functoriality’. Let f : ¥ — X be continuous and
let f*V be the vector bundle pullback of V. Then

a(f*V) = f(a(V))

(The notation is a bit unfortunate in that there are two different S* in the formula;
but is traditional). A second important property is the ‘Whitney sum formula’. Let

c(V)=1+c1(V)+ca(V)+-

be the so-called total Chern class (also sometimes called complete Chern class). Let
W be a second complex vector bundle over X. Then

eV OW) = c(V)e(W)

where on the right hand side the cohomology cup product is used. And in fact to-
gether with co(V) = 1 and a normalization condition that specifies the total Chern
class of the canonical (tautological) line bundle over the complex projective spaces
Gr;(C") these two properties completely determine the Chern classes. See also
[68], theorem 3.2 on page 78.

Next one calculates the cohomology of the classifying spaces BU, to be

H*(BU,;Z) = Z[c1, ¢, ,cp)

where the c¢; are the Chern classes of the canonical vector bundle ¥, over BU,,. For
instance with induction starting with the very simple case BU; = CP* which has a
CW complex cell decomposition with precisely one cell in every even dimension.
This is the way it is done in [128]. One can also use special sequences. It follows
that
H*(BU;Z) = Z[cl’CZ)... )C"’. : .]

which is isomorphic, at least as rings, to Symm. This is precisely the kind of calcu-
latory proof that I do not like.

However, there is the following aspect. It is often a good idea to view Symm as
the symmetric functions in an infinity of indeterminates

Symm C Z[él)éZ:éL"']

Now on the topological side consider the canonical line bundle % — BU; and take
the n-fold product ¢y x - - - x . This an n-dimensional bundle over the n-fold product
BU, x --- x BU,. The cohomology of this space is
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Z[Th,"' »nn]

where 7; is the first Chern class of the i-th %. Also by the Whitney sum formula
clnx-xy)=(14+m)-(1+m)

Now by the classifying space property of BU, there is a homotopy class of maps
f:BU| x --- x BU; — BU, such that the pullback of ¥, by fis 71 x --- x 7. Using
functoriality it follows that f* takes c; € H*(BU,; Z) to the i-th elementary symme.t-
ric function in the 7)’s and that H*(BU,; Z) manifests itself as the ring of symmetric
functions in Z[1;, - ,M,). This is taken from page 189 of [128];

Add to this that the Chern classes of the ¥, (the universal Chern classes) can be
described explicitly in terms of Schubert cycles, and, possibly, this can be worked
up to a much less calculatory proof of the isomorphism ‘SP’.

~

5.3.3.7 The isomorphism ‘F’ between R(W) and U(W)

Consider an n-dimensional formal group F over a (unital commutative associative)
ring A. Here n can be infinity. It is given by n power series.in 2n indeterminates
grouped in two groups of n indeterminates with coefficients in A. Let R(f ) be the
ring of power series over A in n indeterminates. Then the n power series of the
formal group F define a biaigebra like structure

R(F) — R(F)®R(F)

This object is called the contravariant bialgebra of the formal group. (It is really
needed (in general) to take the completed tensor product; even for n = | one has
AX)I®A[[Y]] G AllX, Y]} .

R(F) is given the usual power series topology. Now form

U(F) = MOdA,Coul (R(F),A) (5.49)

This is the covariant bialgebra (in fact Hopf algebra) of the formal group F. In-
versely one can obtain R(F) from U(F); just how will not be needed here.

In the case of the formal group W of the Witt vectors (over the integers) the power
series defining it are in fact polynomials. And thus the restriction to

R(W) = Z[Xl,Xg,“-] C Z[[XI,XZ,"'” =R(W)

of R(W) — R(W)@R(W) lands in R(W) ® R(W). As the polynomials are dense in
the power series, in this polynomial case, formula (5.49) is equivalent to

U(W) = Modz(R(W),Z)

and thus isomorphism ‘F” is a consequence of the autoduality of R(W) = Symm.
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5.3.3.8 On the isomorphisms ‘M1’ and ‘M3’ between R(S), K(P;) and U{A)

One sees from formula (5.48) in subsection 5.3.3.3 that each irreducible representa-
tion of S, defines a functor of Vy to itself that is polynomial. Here V is the category
of finite dimensional vector spaces over the field k, and polynomial means that for
each pair of vector spaces U, V the mapping F : Hom(U,V) — Hom(F(U),F(V)) is
polynomial. Let now Py, be the category of polynomial functors V; — V. of bounded
degree and K(P;) its Grothendieck group. Then the remarks just made practically
establish the isomorphism ‘M1’.

Next, K(P;) carries a A-ring structure induced by composition with the exte-
rior powers A’ : Vi — V. It turns out that it thus becomes the free A-ring on one
generator, [7], [118]. This is ‘M3’.

It needs to be sorted out whether the composition of ‘M1’ and ‘M3’ equals the
composition of ‘Z’ and ‘Ha’.

The main aim of [118] is to generalize this in various ways. Let A be a k algebra,
Vy4 the category of finitely generated projective left A modules, P4 the category
of polynomial functors V4 — V; of bounded degree and K(P,4) its Grothendieck
group. Then K(Py) is the free A-ring generated by the classes of the functors P —
E &4 P where E runs through a complete set of non-isomorphic finite dimensional
simple right A-modules.

When applied to the group ring of a finite group there is also the result that
@R(G ~ §,) is the free A -ring on the irreducible representation of G. (Here G~ S,
n>0
is the wreath product of G and S,,.) Thus ‘M1’ and ‘M3’ are just the simplest cases
of much more general results, which makes them nicer in my view.

5.3.3.9 On the object £(Z) and the isomorphisms ‘Hol’ and ‘Ho2’

Peter Hoffman noted that there is a nice functor E, denoted ‘exp’ in [81] that makes
some of what went before more elegant.

Let Ab be the category of Abelian groups and GrRing that of (unital ungraded—
commutative) graded rings. An object R of GrRing is a direct sum of Abelian
groups R; together with multiplications R; @ R; — R;;.; making @;R; a unital com-
mutative ring. As in the case of the big Witt vectors one considers the “1-units”. To
be precise consider the functor

~: GrRing — Ab defined by R = 1+ [ & (5.50)

i=1

where the Abelian group structure is given by multiplication.

Note that the functor of the big Witt vectors is given by S+ S[[¢]] — S[[¢]]". What
this means is completely unexplored.

The functor (5.50) has a left adjoint Ab — GrRing, here denoted E, so that there
is the functorial equality
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-~

GrRing(E(A),R) = Ab(4,R)

As a left adjoint E(A) should be thought of as some kind of free object and, as is
so often the case with functors that are part of an adjunction it picks up all kinds
of extra structure. In this case it is first of all a Hopf algebra (as happened with the
universal enveloping algebra). This comes from the observation that

E(A®B) =E(A)®E(B)%

E(A) carries a natural A-ring structure. (Though I find the construction very difficult
and, frankly, definitely on the ugly side.)

However, it is worth exploring further as it goes through the notion of what the
author calls an @-ring, a notion equivalent to that of a A-ring but whose axioms only
involve linear maps. This gives one a shot at solving a rather vexing matter. Symm
is a A-ring; it is also selfdual. So, morally speaking, there should be something like
a ‘dual A-ring structure’ on it.

Returning to the paper [81], the main theorems appear to be

@R(G ~ Sn) = E(R(G))

n>0
E(A) is the free A-ring generated by A

which are very nice results showing that the functor E merits further attention.

5.3.3.10 The K-theory of endomorphisms

Let A be a unital commutative ring. Consider the category End(A) of pairs (P, f)
where P is a finitely generated projective A-module and f an endomorphism of
P. A morphism ¢ : (P, f) — (Q,g) in End(A) is a morphism ¢ of A-modules that
commutes with the given endomorphisms, i.e. g¢ = ¢ f. There is an obvious notion
of exact sequence in End(A) and so one can form the Grothendieck group and ring,?’
K(End(A)), the study of which was initiated by Gert Aimkvist, [3], [4].

Given (P, f) € End(A) let Q be a finitely generated module such that P® Q is free
and consider the endomorphism f @ 0 of this module and its characteristic polyno-
mial det(1 4 #(f % 0)). This is a polynomial in ¢ that does not depend on Q. This
induces a homomorphism K(End(A4)) — W(A), where W(—) is the functor of the
big Witt vectors, that is obviously zero on K(A). (The projective modules over A are
imbedded in End(A) as pairs (4,0)). Thus there results a morphism (of rings in fact)

¢ : K(End(A))/K(A) = Wo(A) — W(A)

functorial in A. Almkvist now proves:

20 This formula also illustrates that ‘exponential’ or ‘exp’ is a most apt appellation.
21 The multiplication is induced by the tensor product.
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The morphism c is injective for all A and the image of ¢ (for a given A) consists
of all power series | + ¢t + 012 + - - - that can be written in the form

_ 14bit4byr® 4 byt
1 +dit +dat?+ -+ dyt"

I+ ogt+ o+ with b;,d; € A
For obvious reasons I call these rational Witt vectors. A first question is now whether
this functor Wy(—) is representable. It is, [75]. This requires some preparation. Con-
sider the ring

Z[X] = Z[XI 7X21X37 e ]

of polynomials in a countable infinity of commuting indeterminates. Form the Han-
kel matrix
1 Xy X2 X3 -+
X1 Xo X3 Xy -+
Xo X3 X4 X5 -+

Now let J, be the ideal in Z[X] generated by all (n+ 1) x (n+ 1) minors of this Han-
kel matrix. These ideals define a topology on Z[X] which for the present purposes I
will call the J-topology. The representability result is now as follows.

For each rational Witt vector () = 1+ oyt + 0pt? +--- € Wp(A) let bo(r)
Z[X] — A be the ring morphism defined by X; + 0;. Then o(t) — @qy) is a func-
torial and injective morphism from Wp(A) to ring morphisms Z[X] — A that are
continuous with respect to the J-topology on Z[X] and the discrete topology on A.
If A is Fatou, so in particular if A is integral and Noetherian, the correspondence is
bijective.

Here Fatou is a technical condition that is of no particular importance for this
paper. Suffice it to say that a Noetherian integral domain is Fatou. Incidentally the
quotient rings Z[X]/J, are integral domains, but they are not Noetherian and not
Fatou.

For a host of other results, including a determination of the operations in the
K-theory of endomorphisms, see [3], [4], [75].

5.3.3.11 Leftovers

* Symm is an object with an enormous amount of compatible structure: Hopf al-
gebra, inner product, selfdual (as a Hopf algebra), PSH, coring object in the cat-
egory of rings, ring object in the category of corings (up to a little bit of unit
trouble), Frobenius and Verschiebung endomorphisms, free algebra on the cofree
coalgebra over Z (and the dual of this: cofree coalgebra over the free algebra on
one element), several levels of lambda ring structure, ... .

The question arises which ones of these have natural interpretations in the other
nine incarnations occurring in the diagram (and whether the isomorphisms indi-
cated are the right ones for preserving these structures).
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« Symm represents the functor of the big Witt vectors W (A4) = {1+ o7 + ot +
.-+ : o € A}. Now Hopf(Symm,Symm) = W (Z), [112]. This comes about be-
cause on the one hand Symm is the free algebra on the cofree coalgebra over Z,
and on the other the cofree coalgebra over the free algebra over Z.

This is a curiosity that certainly merits some thought and one wonders whether
something similar occurs elsewhere.

The list of references below contains more items than are actually referred to in the
text above. The others are included because I know or suspect that there are more
niceness results in them.
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